Data Science mit Python

Einführung in die Data Science-Programmiersprache Python zur Datenanalyse
 
 

Effiziente Datenanalyse mit Python

 

Python ist eine Programmiersprache, die auch im Bereich Data Science etabliert ist. Aufgrund ihrer klaren Syntax und leicht verständlichen Struktur eignet sie sich für die Datenanalyse. Bei richtiger Anwendung macht Python das Analysieren großer Datenmengen einfach, effizient und kann Unternehmen rasch neue Erkenntnisse aus dem eigenen Datenbestand verschaffen. Darüber hinaus ist Python plattformunabhängig – es läuft unter Linux, Mac und Windows ebenso wie unter Unix und vielen Unix-Systemen.

 

Datum

Ort

Zeit

Preis*

Nicht-Mitglied

Preis*

Bitkom-Mitglied

Zertifizierung*

(optional)

Verfügbar

 

Datum

05.10.20 - 07.10.20

Ort

berlin

Berlin

Zeit

10:00 - 17:00

Preis*

Nicht-Mitglied

1.950

Preis*

Bitkom-Mitglied

1.750

Zertifizierung*

(optional)

-

Verfügbar

 

* zzgl. USt. | 10% Rabatt für den zweiten und jeden weiteren Teilnehmer

Ziele des Seminars
  • Sie erhalten eine umfassende Einführung in die wichtigsten Grundlagen der Programmiersprache Python: anhand eines durchgehenden Fallbeispiels erlernen Sie, wie Daten eingelesen, verarbeitet, aufbereitet und schließlich visualisiert werden.
  • Das Seminar führt in die bekannte Bibliothek pandas ein, welche bei data scientists für die Datenanalyse sehr beliebt ist.
  • Sie erhalten erste Einblicke in zwei Machine Learning Algorithmen (Lineare Regression und Entscheidungsbaum), welche in Python umgesetzt werden, um Ergebnisse aus Data Science-Analysen auswerten zu können.
  • Sie sind anschließend in der Lage, Grundlagen von Python selbstständig für unternehmenseigene Zwecke zu nutzen, können Ihre eigenen ersten Datenanalysen durchführen und wissen, wie Sie weitergehende Algorithmen und Methoden in Python finden.

 

Inhalte des Seminars

Das dreitägige Seminar schafft einen kompakten und umfangreichen Einstieg in die Data Science- und Programmiersprache Python. Sie sind anschließend in der Lage, Python selbstständig für einfache Datenanalysen im Unternehmen zu nutzen. Das Seminar umfasst hierbei eine Einführung in die Datenstruktur DataFrame vom Paket pandas (effizient Daten anpassen und verändern), Daten aus flat files (csv) oder einer Datenbank (SQLite) einlesen bzw. schreiben, Visualisierung mit matplotlib und seaborn, Grundlagen von numpy, erste eigene Funktionen schreiben und enthält einen Einstieg in Machine Learning mit den Algorithmen Lineare Regression und Entscheidungsbaum. Konkrete Inhalte sind:

  • Grundlagen von Python
  • Einführung in das Data Science Paket pandas und dem DataFrame
  • Daten aus flat files oder Datenbanken einlesen und schreiben
  • Daten anpassen, konvertieren, modellieren
  • Visualisierung von Daten
  • Erste Algorithmen aus dem Machine Learning

Dieses Seminar ist sehr praxisorientiert. Die Teilnehmer arbeiten direkt und selbstständig mit der Programmiersprache Python in der Entwicklungsumgebung Spyder, so dass das Erlernte direkt geübt und vertieft werden kann. Der Trainer moderiert dabei verschiedene Aufgaben und begleitet die Teilnehmer durch die einzelnen Lehreinheiten.

Die Bitkom Akademie bietet ein zweitägiges Vertiefungsseminar zu Machine Learning an, welches inhaltlich und didaktisch auf dem Seminar Data Science mit Python aufbaut. Weitere Informationen zu Supervised & Unsupervised Machine Learning finden Sie hier.

 

Zielgruppen

Das Seminar richtet sich an angehende Data Scientists, Datenanalysten und an der Programmierung in Python interessierte Fachkräfte bzw. Projektleiter, welche schon erste Programmiererfahrung in Python oder einer anderen Programmiersprache haben und die Grundlagen der Programmiersprache Python für Data Science-Projekte erlernen möchten, um damit eigenständig an data mining Projekten mitzuwirken oder Python Code besser verstehen zu können.

Die Teilnehmer benötigen keine Erfahrung mit Python, sollten aber bereits Erfahrung mit einer Programmiersprache (z.B. VBA, Java, C, R, etc.) gemacht haben, um das Grundkonzept einer Programmiersprache zu verstehen (Variable in einer Programmiersprache, Zuweisung von Werten zu einer Variablen, Aufrufen von Funktionen, Parameter einer Funktion).

Sehr hilfreich sind grundlegende Vorkenntnisse im Bereich der Statistik (Begriffsdefinitionen wie bspw. Mittelwert, Median, Standard-abweichung, Quantil, Dichtefunktion, Normalverteilung), Kenntnisse grundlegender mathematischer Symbole und Begriff (Summenzeichen, Integral, Funktion, Ableitung, Menge der natürlichen und reellen Zahlen, Vektor, Matrix) und Kenntnis der booleschen Algebra mit den logischen Operatoren (UND, ODER, NICHT).

 

Ihr Seminarprogramm

 

Programm-Download

 

Seminarprogramm | Tag 1

  • 10:00-10:30
    Begrüßung durch den Seminarleiter
    • Vorstellungsrunde & Erwartungshaltung der Teilnehmer
  • 10:30-12:00
    Hintergrund von Python
    • Anwendungsmöglichkeiten von Python
    • Installieren von Paketen
    • Die Entwicklungsumgebung Spyder
    • Aspekte von Python, welche von anderen Programmiersprachen abweichen
  • 12:00-12:15
    Kaffeepause mit Gelegenheit zum Erfahrungsaustausch und Networking
  • 12:15-13:45
    Datenstrukturen in Python
    • Einführung in die grundlegenden Datenstrukturen (int, float, NaN)e
    • Der Wert NaN (not a number) und Besonderheiten
    • Funktionen vs. Methoden
    • Datenstrukturen in Python (number, tuple, list, dictionary, string)
    • list vs. tuple
    • Wann benutze ich welche Klammer [], (), {}?
  • 13:45-14:45
    Mittagspause
  • 14:45-16:15
    Einführung in das Data Science Paket pandas
    • Elemente eines pandas data.frame
    • Eine Zeile oder Spalte auswählen, hinzufügen und verändern
    • Boolean indexing
    • Ein leeres data.frame erstellen
  • 16:15-16:30
    Kaffeepause mit Gelegenheit zum Erfahrungsaustausch und Networking
  • 16:30-18:00
    Grundlegende Statistiken mit pandas
    • Statistiken mit einem data.frame berechnen (Anzahl an Beobachtungen, Summe, Mittelwert, Median, Minimum, Maximum, Varianz,…)
    • Methoden im data.frame, um einen Überblick der Daten zu erhalten
    • Kreuztabelle (Kontingenztafel)
    • Auswertungen nach einer Variable gruppieren
    • Fehlende Werte löschen oder ergänzen
  • 18:00
    Ende des ersten Seminartages

 

 

Seminarprogramm | Tag 2

  • 09:00-09:30
    Begrüßung durch den Seminarleiter und Rückblick auf Tag 1
  • 09:30-10:45
    Visualisierung mit matplotlib und pandas
    • Die Hauptelemente beim Plotten
    • Einen Plot anpassen (x- und y-Achse ändern, Beschriftungen, Legende und Titel) und speichern
    • Auswahl von Farben
    • Subplots in einer Grafik erstellen
    • Erstellen von Scatterplot, Linienplot, Barplot, (gruppiertes) Histogram, Boxplot
  • 10:45-11:00
    Kaffeepause mit Gelegenheit zum Erfahrungsaustausch und Networking
  • 11:00-12:30
    Control Flows
    • Die range() Funktion
    • Eine eigene Funktion schreiben und default Parameter setzen
    • For Schleifen, If-Else Bedingungen
    • List comprehension
    • Logische Vergleichsoperatoren
  • 12:30-13:30
    Mittagspause
  • 13:30-15:15
    Daten einlesen
    • Das Arbeitsverzeichnis setzen
    • Eine CSV Datei einlesen / schreiben
    • Überblick über nützliche Parameter beim Lesen und Schreiben
    • Große Dateien mit dem Paket pandas einlesen
    • Das pickle modul zum Speichern von Python Objekten
  • 15:15-15:30
    Kaffeepause mit Gelegenheit zum Erfahrungsaustausch und Networking
  • 15:00-17:00
    Daten aus Datenbanken einlesen
    • Eine Verbindung zu einer Datenbank aus Python herstellen
    • Eine Tabelle aus der Datenbank abfragen bzw. hinzufügen
    • Eine bestehende Tabelle in der Datenbank erweitern
    • SQL Abfragen über Python
  • 17:00
    Ende des zweiten Seminartages

 

 

Seminarprogramm | Tag 3

  • 09:00-09:30
    Begrüßung durch den Seminarleiter und Rückblick auf Tag 1
  • 09:30-10:30
    Lineare Regression
    • Einführung in den Algorithmus
    • Ein lineares Regressionsmodel in Python umsetzen
    • Erste Ergebnisse validieren
  • 10:30-11:00
    Kaffeepause mit Gelegenheit zum Erfahrungsaustausch und Networking
  • 11:00-12:30
    Entscheidungsbaum
    • Einführung in den Algorithmus
    • Einen Entscheidungsbaum in Python umsetzen
    • Erste Ergebnisse validieren
    • >
  • 12:30-13:30
    Mittagspause
  • 13:30-15:00
    Grundlagen in Numpy
    • Attribute eines arrays (Dimension, shape, Größe)
    • Arrays zusammenfügen und teilen
    • Statistische Funktionen in numpy
  • 15:00-15:30
    Kaffeepause mit Gelegenheit zum Erfahrungsaustausch und Networking
  • 15:30-17:00
    Data Preprocessing
    • Daten normalisieren
    • Kategorisches Enkodieren von Variablen
    • One-Hot Encoding
  • 17:00
    Ende des Seminars

 

Zusätzliche Informationen
  • Die Online-Seminare der Bitkom Akademie sind live, interaktiv und dialogorientiert. Sie können dem Referenten via Chat Fragen stellen.
  • Für die Teilnahme an unseren Online-Seminaren benötigen Sie einen aktuellen Browser und ggf. ein Headset.
  • Unser Virtual Classroom läuft auf allen gängigen Betriebssystemen (zu den Systemanforderungen). Darüber hinaus bieten wir Ihnen unterschiedliche Möglichkeiten, um an unseren Live-Online-Seminaren teilzunehmen (zu den Teilnahmemethoden).
  • Die Teilnehmer sollten vorab prüfen, ob firmeneigene Laptops Zugangsbeschränkungen beim Herunterladen von Dateien und Programmen haben, die der Referent bereitstellt. Die digitalen Unterlagen (Skript, Code, Dateien) werden über eine Cloud zur Verfügung gestellt. Die Einwahl in fremde WLAN-Netze sollte daher möglich sein.
  • Im Idealfall ist der USB Port der Teilnehmer-Laptops freigeschalten, so dass als Backup Pakete, verwendete Daten oder sonstige Unterlagen per USB-Stick übertragen werden können. 
  • Bitte stellen Sie sicher, dass Sie mit dem Betriebssystem (Windows, Mac OS, Linux), mit dem Sie arbeiten, vertraut sind.
  • Das Seminar findet in einer kleinen Gruppe mit mind. 5 und max. 11 Teilnehmern statt. Unser Referent kann dadurch auf individuelle Fragestellungen besser eingehen.
  • Die Bitkom Akademie ist anerkannter Bildungsträger in Baden-Württemberg und Nordrhein-Westfalen. Teilnehmer haben im Rahmen des Bildungszeitgesetzes die Möglichkeit, Bildungsurlaub bzw. eine Bildungsfreistellung zu beantragen. Auf Anfrage erstellen wir auch Anträge auf Anerkennung unserer Veranstaltungen in anderen Bundesländern.   
  • Anmeldeschluss ist 2 Wochen vor Seminarbeginn.
  • Wir erklären ausdrücklich, dass beim Bitkom – Unterzeichner der Charta der Vielfalt – jede Person, unabhängig von Geschlecht, Nationalität, ethnischer Herkunft, Religion oder Weltanschauung, Behinderung, Alter, sexueller Orientierung und Identität willkommen ist.

 

Seminar-Rücktrittsversicherung
  • Gemeinsam mit der HanseMerkur bietet die Bitkom Akademie eine freiwillige Seminar-Rücktrittsversicherung an.
  • Diese Versicherung ermöglicht Ihnen die kostenfreie Stornierung Ihrer Teilnahme, wenn kurzfristige oder unvorhergesehene Ereignisse Ihre Teilnahme am Seminar verhindern.
  • Die Kosten der Seminar-Rücktrittsversicherung sind abhängig vom Seminarpreis. Die Preisliste der HanseMerkur finden Sie hier.

 

Mehr erfahren Zur Buchung

 

share